한빛미디어의 “김기현의 딥러닝 부트캠프 with 파이토치”를 소개합니다.
최근 몇 년간 머신 러닝, 딥러닝에 대한 많은 도서가 출간되었고, 각 도서마다 특색을 가지고 있다. 입문자를 타겟으로 하는 많은 도서가있는가 하면, 이미지, 영상에 대한 딥러닝, 혹은 언어를 포커스한 딥러닝 도서들도 있다. 이 책은 타 도서와비교하여 어떤 내용에 포커스해서 차별화 포인트를 가지고 있을까. 도서 주요 내용만을 본다면 기존 머신러닝, 딥러닝 입문서에서 다루는 내용과 특별함을 가지고 있다고 생각치 않는다.
하지만 저자의 이름을 어렴풋이 기억하는 이유는
머신러닝, 딥러닝이 관심을 받던 몇 년 전 강의가 전무했던 시절 패스트캠퍼스에서자연어 처리 강의를 했다는 기억이 있기에 저자에 대한 믿음이 있다고나 할까…
딥린이를 위한 …
딥린이라는 재미있는 단어가 나오는데, 본 도서는 머신러닝, 딥러닝 입문자를 타겟으로 하고 있다.
저자의 경우 자연어 처리 강의로 유명해주신 분이기는하지만, 머신러닝과 딥러닝, CNN과 RNN 등 딥러닝 입문자를 위한 기초 내용을 충실히 다루고 있다. 저자가딥러닝 초창기부터 유명한 강의 강사였던 점이 본 도서의 매력을 좀더 끌고 나가는데 충분하지 않는가…
적절한 이론과 함께 실습, 특히 본 도서는 tensorflow 보다는 pytorch를 기반으로 실습을 진행한다.
학습 온라인 동영상 강의의 경우 저자의 강의와 함께 연계하도록 로드맵을 구상하였다. 아래 그림에서 보면 본 도서의 경우 딥:클 입문 이후, 딥:클 초급 단계, 이후NLP 입문으로 이어지는 중간 단계에 해당한다.
충실한 입문서-중급서 내용전개 …
도서의 각 챕터마다 다루고 하는 내용을 소개하고, 챕터 마지막 부분에 요약을 둠으로써 배운 지식의 되새김을 하도록 전개하고 있다.
물론 실습 문제를 통해 본문에서 배운 이론과 예제를 독자로 하여금 확장해서 응용하도록 유도하는 부분도 마음에든다.
굳이 단점을 고르라면 내용의 충실도와 짜임새 있는 편집 모두 좋았으나, 그림에대한 사용과 예제가 조금 부족하지 않았을까 싶은데, 그림을 통해 시각적인 효과 역시 무시 못하기 때문입니다. (충분하다고 생각이 되면서도 입문서로 접근하는 독자라면 그런 느낌을 받지 않을까)
타겟 독자는 누구일까… 전체적인 내용은 머신러닝 입문서에 해당하는내용이긴 하지만, 입문을 하더라도 중급으로 확장하고자 할 때, 좀더 예제를 통한 머신러닝, 딥러닝 지식을 높이고자 하는 독자가 아닐까 싶다.
"한빛미디어 <나는리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."