메뉴 바로가기 검색 및 카테고리 바로가기 본문 바로가기

실무자를 위한 그래프 데이터 활용법

그래프를 그리면 세상이 보인다, 그래프 씽킹으로 시작하는 그래프 데이터베이스 사용 안내서

한빛미디어

번역서

판매중

  • 저자 : 데니즈 고즈넬 , 마티아스 브뢰헬러
  • 번역 : 우정은
  • 출간 : 2022-05-10
  • 페이지 : 448 쪽
  • ISBN : 9791162245590
  • eISBN : 9791162245811
  • 물류코드 :10559
  • 초급 초중급 중급 중고급 고급
1 2 3 4 5
4.6점 (16명)
좋아요 : 16

책소개

국내 최초 그래프 씽킹(graph thinking) 안내서, 

문제 해결력을 키우는 그래프 씽킹 완벽 가이드

 

데이터는 점점 더 방대하고 복잡해지고 있다. 넘쳐나는 데이터의 홍수 속에서 구원의 손길을 바라는 이가 있다면 바로 여기, 이 책을 펼쳐보자. 컴퓨터는 행과 열로 이루어진 정적 데이터에 의존하는 반면, 사람은 관계를 통해 삶을 탐색하고 유추한다. 그래프 데이터는 사람과 컴퓨터가 세상을 바라보는 관점의 차이를 좁힌다. 이 책에서는 새로운 사고방식인 그래프 씽킹 개념을 소개하며 그래프 데이터로 두 가지 접근 방식을 아우르는 방법을 친절히 안내한다. 이 책을 따라 하며 그래프 씽킹과 그래프 이론, 데이터베이스 스키마, 분산 시스템, 데이터 분석을 터득하고 그래프 데이터를 효율적으로 구축해 복잡한 문제를 해결하는 법을 배워보자. 

 

 

상세페이지700_실무자를 위한 그래프 데이터 활용법.jpg

저자소개

데니즈 고즈넬 저자

데니즈 고즈넬

데이터스택스(Datastax)의 최고 데이터 책임자(CDO). 2017년 데이터스택스에 합류해 세계에서 가장 큰 분산 그래프 애플리케이션을 개발하는 Global Graph Practice 팀을 만들고 이끌었다. 미국 국립과학재단 펠로로 테네시 대학교(University of Tennessee)에서 컴퓨터 공학 박사 학위를 취득했다. 그래프 알고리즘을 활용해 소셜 미디어 상호작용 기반으로 사용자 신원을 예측하는 ‘소셜 지문(social fingerprinting)’ 개념을 만들고 연구했다. 주요 경력은 그래프 데이터 애플리케이션을 조사하고, 적용하고, 지지하는 것과 관련된다. 그래프 이론, 그래프 알고리즘, 그래프 데이터베이스와 관련한 특허를 출원하고 출판했으며, 이와 연계된 다양한 주제의 연사로도 활동한다. 데이터스택스에서 일하기 전에는 의료 산업에 근무하면서 허가형 블록체인, 그래프 분석과 데이터 과학에 적용하는 머신러닝 등의 소프트웨어 솔루션을 개발했다.

마티아스 브뢰헬러 저자

마티아스 브뢰헬러

데이터스택스의 최고 기술 책임자(CTO)이며 수많은 연구 개발 경험을 보유한 기업가다. 혁신적인 소프트웨어 기술과 복잡한 시스템 이해를 집중적으로 연구한다. 그래프 데이터베이스, 관계형 머신러닝, 일반적인 빅데이터 분석 분야의 전문가로 유명하다. 린 방법론과 꾸준한 실험을 통해 지속적인 향상을 추구한다. 타이탄(Titan) 그래프 데이터베이스를 만들었고 아우렐리우스(Aurelius)를 설립했다.

우정은 역자

우정은

인하대학교 컴퓨터공학과를 졸업하고 LG전자, 썬 마이크로시스템즈, 오라클 등에서 모바일 제품 관련 개발을 했다. 뉴질랜드 웰링턴에 있는 Xero에서 모바일 앱을 개발하다가 현재는 DevOps 팀에서 새로운 인생을 즐기고 있다. 2010년 아이폰의 매력에 빠져들면서 번역과 개발을 취미로 삼고 꾸준히 서적을 번역한다. 옮긴 책으로는 『플러터 인 액션』, 『처음 배우는 스위프트』, 『실전 자바 소프트웨어 개발』, 『모던 자바 인 액션』, 『실무자를 위한 그래프 데이터 활용법』(이상 한빛미디어) 등이 있다.

 

목차

CHAPTER 1 그래프 씽킹

1.1 떠오르는 그래프 기술

1.2 그래프 씽킹이란

1.3 복잡한 문제를 해결하는 기술 선택하기

1.4 그래프 씽킹 여정 시작하기

 

CHAPTER 2 관계형에서 그래프 씽킹으로

2.1 2장 미리 보기: 관계형 개념을 그래프 용어로 변환하기

2.2 관계형과 그래프의 차이

2.3 관계형 데이터 모델링

2.4 그래프 데이터의 개념

2.5 그래프 스키마 언어

2.6 관계형 vs 그래프: 결정 고려 사항

2.7 마치며

 

CHAPTER 3 간단한 Customer 360

3.1 3장 미리 보기: 관계형 vs 그래프

3.2 그래프 데이터 기본 사용 사례: Customer 360(C360)

3.3 관계형 시스템으로 C360 애플리케이션 구현하기

3.4 그래프 시스템으로 C360 애플리케이션 구현하기

3.5 관계형 vs 그래프: 선택의 기로에 서 있다면

3.6 마치며

 

CHAPTER 4 이웃 탐색 개발

4.1 4장 미리 보기: 더 현실적인 C360 만들기

4.2 그래프 데이터 모델링 101

4.3 이웃 탐색 개발 세부 구현

4.4 기본적인 그렘린 탐색

4.5 고급 그렘린: 질의 결과 다듬기

4.6 개발 단계에서 제품 단계로 이동하기

 

CHAPTER 5 이웃 탐색 제품화

5.1 5장 미리 보기: 아파치 카산드라의 분산 그래프 데이터 이해하기

5.2 아파치 카산드라에서 그래프 데이터 사용하기

5.3 그래프 데이터 모델링 201

5.4 최종 제품 구현

5.5 더 복잡한, 분산 그래프 문제

 

CHAPTER 6 트리 사용 개발

6.1 6장 미리 보기: 트리 탐색, 계층 데이터, 순환

6.2 세 가지 예제로 살펴보는 계층, 중첩 데이터

6.3 용어의 숲에서 길 찾기

6.4 센서 데이터로 계층 구조 이해하기

6.5 개발 모드: 리프에서 루트로 질의하기

6.6 개발 모드: 루트에서 리프로 질의하기

6.7 시간 정보 확인

 

CHAPTER 7 트리 사용 제품화

7.1 7장 미리 보기: 분기 계수, 깊이, 간선의 시간 이해

7.2 센서 데이터의 시간 이해

7.3 분기 계수 이해

7.4 센서 데이터 제품 스키마

7.5 제품 모드: 리프에서 루트로 질의하기

7.6 제품 모드: 루트에서 리프로 질의하기

7.7 타워 장애 시나리오에 질의 적용하기

7.8 나무를 위해 숲 보기

 

CHAPTER 8 경로 찾기 개발

8.1 8장 미리 보기: 네트워크의 신뢰 수량화하기

8.2 세 가지 예제로 살펴보는 신뢰

8.3 경로 기초 개념

8.4 신뢰 네트워크에서 경로 찾기

8.5 비트코인 신뢰 네트워크로 탐색 이해하기

8.6 최단 경로 질의

 

CHAPTER 9 경로 찾기 제품화

9.1 9장 미리 보기: 가중치, 거리, 가지치기 이해하기

9.2 가중치 경로와 검색 알고리즘

9.3 최단 경로 문제에 알맞게 간선 가중치 정규화하기

9.4 최단 가중치 경로 질의

9.5 제품의 가중치 경로와 신뢰

 

CHAPTER 10 추천 개발

10.1 10장 미리 보기: 영화 추천 협업 필터링

10.2 추천 시스템 예

10.3 협업 필터링 소개

10.4 영화 데이터: 스키마, 로딩, 질의 검토

10.5 그렘린의 항목 기반 협업 필터링

 

CHAPTER 11 그래프의 간단한 개체 해석

11.1 11장 미리 보기: 여러 데이터셋을 하나의 그래프로 병합하기

11.2 다른 복잡한 문제 정의: 개체 해석

11.3 두 영화 데이터셋 분석하기

11.4 영화 데이터 매칭, 병합

11.5 거짓 긍정 해결

 

CHAPTER 12 추천 제품화

12.1 12장 미리 보기: 지름길 간선, 사전 계산, 고급 가지치기 기술 이해하기

12.2 실시간 추천용 지름길 간선

12.3 영화 데이터의 지름길 간선 계산하기

12.4 영화 추천 제품 스키마와 데이터 로딩

12.5 지름길 간선을 이용한 추천 질의

 

CHAPTER 13 마치며

13.1 이제 어디로 가야 할까

13.2 연락 주고받기

출판사리뷰

이제는 그래프 데이터베이스 시대! 

새로운 패러다임 그래프 씽킹을 만나다 

 

데이터 관리 회사 ‘데이터스택스(Datastax)’에서 근무하는 CDO, CTO가 함께 집필한 그래프 데이터베이스 사용 안내서! 그들이 여러 팀에게 조언하며 얻은 지식과 노하우를 이 책에 모두 담았다. 방대하고 복잡한 데이터에서 가치를 추출하는 혜안으로 ‘그래프 씽킹’ 개념을 제시하며 여러분의 사고방식을 그래프 씽킹으로 전환할 수 있도록 친절히 안내한다. 개념 이해를 돕는 풍부한 그림과 실무에 유용한 예제를 통해 그래프 데이터베이스 시대를 마주하게 될 여러분에게 세상을 이해할 수 있는 비밀스런 열쇠를 쥐여준다. 그래프 씽킹으로 데이터를 효율적으로 구축하는 방법을 배워 한 걸음 더 성장한 데이터 엔지니어가 되어보자.

 

 

대상 독자

  • 그래프 데이터를 효과적으로 사용하고 싶은 데이터 엔지니어, 데이터 아키텍트
  • 그래프 씽킹을 터득하고 싶은 데이터 과학자, 데이터 분석가
  • 그래프 씽킹이 궁금한 누구나(기초 데이터베이스 지식이 있다면 개념을 더 쉽게 이해할 수 있다)

 

주요 내용

  • 관계형, 그래프 데이터베이스로 아키텍처 구축하기
  • 유명한 그래프 데이터 패턴 Customer 360 애플리케이션 구현하기
  • 계층형 데이터에서 그래프 데이터로 작업할 때 발생하는 문제 해결하기
  • 경로를 찾는 다양한 방법과 경로가 선호도에 미치는 영향 살펴보기
  • 협업 필터링으로 넷플릭스와 비슷한 영화 추천 시스템 설계하기

 

추천사

 

개발자의 서재에 반드시 추가해야 할 참고서. 두 저자 모두 그래프 이론, 아키텍처, 원칙의 모범이라 할 수 있다.

_시어도어 C. 태너 주니어, Watson Health 글로벌 CTO 겸 최고 아키텍트

 

이 책은 데이터베이스의 수준을 한층 끌어올렸다. 그래프 데이터를 처음 접하는 사람에게 유용할 뿐 아니라 이미 경험했던 사람도 새로운 내용을 배울 수 있다.

_매슈 러셀, Strongest AI CEO, 『소셜 웹 마이닝(2판)』(비제이퍼블릭, 2015) 저자

 

단단하고 꼼꼼하게 그래프 데이터베이스에 입문할 수 있는 책. 그래프 데이터베이스에 대한 개념이 약한 초보자를 위해 관계형 데이터베이스와 꼼꼼하게 비교해주는 점이 좋았다. 심지어 예제까지 관계형으로 먼저 만든 뒤 그래프 형태로 바꿔보는 접근 방식 덕분에 개념을 더 쉽게 이해할 수 있었다.

_이요셉, 지나가던 IT인

 

RDBMS, NoSQL 다음은 그래프 데이터 베이스 차례라고 생각한다. 온톨로지와 지식 그래프는 그래프 데이터베이스와 관련이 깊다. 이 분야는 2000년대에 와서 활발히 발전하고 있고, 최근에 관련된 오픈 소스 또는 이를 솔루션으로 내세우는 기업들도 볼 수 있다. 트렌드에 맞춰 그래프 데이터베이스에 대한 기초 이론과 오픈 소스 도구를 익혀보고 싶다면 이 책이 큰 도움이 될 것이다.

_장대혁, 휴넷 인공지능교육연구소

독자리뷰

오탈자 보기

부록/예제소스

결제하기
• 문화비 소득공제 가능
• 배송료 : 2,000원배송료란?

배송료 안내

  • 20,000원 이상 구매시 도서 배송 무료
  • 브론즈, 실버, 골드회원 무료배송
닫기

리뷰쓰기

닫기
* 상품명 :
실무자를 위한 그래프 데이터 활용법
* 제목 :
* 별점평가
1 2 3 4 5
* 내용 :

* 리뷰 작성시 유의사항

글이나 이미지/사진 저작권 등 다른 사람의 권리를 침해하거나 명예를 훼손하는 게시물은 이용약관 및 관련법률에 의해 제재를 받을 수 있습니다.

1. 특히 뉴스/언론사 기사를 전문 또는 부분적으로 '허락없이' 갖고 와서는 안됩니다 (출처를 밝히는 경우에도 안됨).
2. 저작권자의 허락을 받지 않은 콘텐츠의 무단 사용은 저작권자의 권리를 침해하는 행위로, 이에 대한 법적 책임을 지게 될 수 있습니다.

오탈자 등록

닫기
* 도서명 :
실무자를 위한 그래프 데이터 활용법
* 구분 :
* 상품 버전
종이책 PDF ePub
* 페이지 :
* 위치정보 :
* 내용 :

도서 인증

닫기
도서명*
실무자를 위한 그래프 데이터 활용법
구입처*
구입일*
부가기호*
부가기호 안내

* 온라인 또는 오프라인 서점에서 구입한 도서를 인증하면 마일리지 500점을 드립니다.

* 도서인증은 일 3권, 월 10권, 년 50권으로 제한되며 절판도서, eBook 등 일부 도서는 인증이 제한됩니다.

* 구입하지 않고, 허위로 도서 인증을 한 것으로 판단되면 웹사이트 이용이 제한될 수 있습니다.

닫기

해당 상품을 장바구니에 담았습니다.이미 장바구니에 추가된 상품입니다.
장바구니로 이동하시겠습니까?